clear; clc; //To find Approx Value function[A]=approx(V,n) A=round(V*10^n)/10^n;//V-Value n-To what place funcprot(0) endfunction function[Q]=MCPS(T0,T,A,B,C,D) t=T/T0; Q=(A)+(((B*T0)+(((C*T0*T0)+(D/(t*t*T0*T0)))*(t+1)/2))*((t-1)/log(t))) funcprot(0); endfunction function[Q]=MCPH(T0,T,A,B,C,D) t=T/T0; Q=(A+((B/2)*T0*(t+1))+((C/3)*T0*T0*((t^2)+t+1))+(D/(t*T0*T0))) funcprot(0); endfunction //Example 15.1 //Caption : Program to do a Thermodynamic Analysis of Steam Power Plant State=['Supercooled Liquid','Superheated Vapor','Wet Vapor,x=0.9378','Saturated Liqiud']; T=[318.98 773.15 318.98 318.98]; P=[8600 8600 10 10]; H=[203.4 3391.6 2436 191.8]; S=[0.6580 6.6858 7.6846 0.6493]; T0=298.15; T1=460;//[K] R=8.314; T_sigma=T0; //CH4 + 2O2 --> CO2 + 2H2O dH_CO2=-393509; dH_H2O=-241818; dH_CH4=-74520; dG_CO2=-394359; dG_H2O=-228572; dG_CH4=-50460; dH_298=dH_CO2+(2*dH_H2O)-dH_CH4 dG_298=dG_CO2+(2*dG_H2O)-dG_CH4 dS_298=approx((dH_298-dG_298)/T0,3); //Moles Entering ni_O2=2*1.25; ni_N2=approx(ni_O2*(79/21),3); ni=ni_O2+ni_N2; //Moles After Combustion n_CO2=1; n_H2O=2; n_O2=0.5; n_N2=ni_N2; n=n_CO2+n_H2O+n_O2+n_N2; m=[n_CO2 n_H2O n_N2 n_O2]; y_CO2=approx(n_CO2/n,4); y_H2O=approx(n_H2O/n,4); y_O2=approx(n_O2/n,4); y_N2=approx(n_N2/n,4); y=[y_CO2 y_H2O y_O2 y_N2]; yT=sum(y); //Step(a) dH_a=0 dS_a=approx(ni*R*((0.21*log(0.21))+(0.79*log(0.79))),3)//[J/K] //Step(b) dH_b=dH_298 dS_b=dS_298//[J/K] //Step(c) dH_c=0 dS_c=approx(-n*R*sum(y.*log(y)),3)//[J/K] //Step(d) //For CO2 CpH_CO2=approx(R*MCPH(T0,T1,5.457,1.045*(10^-3),0,-1.157*(10^5)),3); //For H2O CpH_H2O=approx(R*MCPH(T0,T1,3.470,1.450*(10^-3),0,0.121*(10^5)),3); //For O2 CpH_O2=approx(R*MCPH(T0,T1,3.639,0.506*(10^-3),0,-0.227*(10^5)),3); //For N2 CpH_N2=approx(R*MCPH(T0,T1,3.280,0.593*(10^-3),0,0.040*(10^5)),3); //For CO2 CpS_CO2=approx(R*MCPS(T0,T1,5.457,1.045*(10^-3),0,-1.157*(10^5)),3); //For H2O CpS_H2O=approx(R*MCPS(T0,T1,3.470,1.450*(10^-3),0,0.121*(10^5)),3); //For O2 CpS_O2=approx(R*MCPS(T0,T1,3.639,0.506*(10^-3),0,-0.227*(10^5)),3); //For N2 CpS_N2=approx(R*MCPS(T0,T1,3.280,0.593*(10^-3),0,0.040*(10^5)),3); CpH=[CpH_CO2 CpH_H2O CpH_N2 CpH_O2]; CpS=[CpS_CO2 CpS_H2O CpS_N2 CpS_O2]; Comp=['CO2' 'H2O' 'N2' 'O2']; Ans=[CpH',CpS']; disp(Ans,' CpH CpS',Comp') CpHt=approx(sum(m.*CpH),3)//[J/K] CpSt=approx(sum(m.*CpS),3)//[J/K] dH_d=approx(CpHt*(T1-T0),0)//[J] dS_d=approx((CpSt*log(T1/T0)),3)//[J/K] dH=dH_a+dH_b+dH_c+dH_d//[J] dS=dS_a+dS_b+dS_c+dS_d//[J/K] rm=84.75;//[kg/s] rn_CH4=approx((rm*(H(1)-H(2))*1000)/dH,2)//[mol/s] rW_ideal=approx(rn_CH4*((dH/1000)-(T0*dS/1000))/1000,2)*1000//[KW] //(a) Furnace/Boiler rS_a=approx((rn_CH4*dS/1000)+(rm*(S(2)-S(1))),2)//[kJ/s/K] rW_a=approx(T_sigma*rS_a/1000,2)*1000//[kW] //(b) Turbine rS_b=approx(rm*(S(3)-S(2)),2)//[kW/K] rW_b=approx(T_sigma*rS_b/1000,2)*1000//[kW] //(c) Condenser Q_c=H(4)-H(3);//[kJ/kg] rQ_c=approx(rm*Q_c/1000,1)*1000//[kJ/s] rS_c=approx((rm*(S(4)-S(3)))-(rQ_c/T_sigma),2)//[kW/K] rW_c=approx(T_sigma*rS_c/1000,2)*1000//[kW] //(d) Pump rS_d=approx(rm*(S(1)-S(4)),2)//[kW/K] rW_d=approx(T_sigma*rS_d/1000,2)*1000//[kW] rS=[rS_a rS_b rS_c rS_d]; pS=approx(rS/sum(rS)*100,1); T=[sum(rS) sum(pS)]; Process=['Furnace/boiler' 'Turbine' 'Condenser' 'Pump']; Ans=[rS',pS']; disp(Ans,' S(kW/K) %',Process') disp(T) rW_ideal=80000; rW=[rW_ideal rW_a rW_b rW_c rW_d]/1000; pW=approx(rW/sum(rW)*100,1); T=[sum(rW) sum(pW)]; Process=['Ideal' 'Furnace/boiler' 'Turbine' 'Condenser' 'Pump']; Ans=[rW',pW']; disp(Ans,' W(kW/K)*10^-3 %',Process') disp(T) eta=pW(1); disp('%',eta,'Efficiency of the power plant is') //End