clear; clc; //To find Approx Value function[A]=approx(V,n) A=round(V*10^n)/10^n;//V-Value n-To what place funcprot(0) endfunction function[Q]=IDCPH(T0,T,dA,dB,dC,dD) t=T/T0; Q=(dA+((dB/2)*T0*(t+1))+((dC/3)*T0*T0*((t^2)+t+1))+(dD/(t*T0*T0)))*(T-T0) funcprot(0); endfunction function[Q]=IDCPS(T0,T,dA,dB,dC,dD) t=T/T0; Q=((dA)*log(t))+(((dB*T0)+(((dC*T0*T0)+(dD/(t*t*T0*T0)))*(t+1)/2))*(t-1)) funcprot(0); endfunction //Example 13.4 //Caption : Program to Find the equillibrium constant for Vapor Phase Hydration T0=298.16;//[K] T1=418.15;//[K] T2=593.15;//[K] R=8.314; //C2H4(g) + H2O(g) --> C2H5OH(g) //Values From Table C.1 At T=298.15K A_ethanol=3.518; A_ethene=1.424; A_water=3.470; B_ethanol=20.001*10^-3; B_ethene=14.394*10^-3; B_water=1.450*10^-3; C_ethanol=-6.002*10^-6; C_ethene=-4.392*10^-6; C_water=0; D_ethanol=0; D_ethene=0; D_water=0.121*10^5; dA=A_ethanol-A_ethene-A_water dB=B_ethanol-B_ethene-B_water dC=C_ethanol-C_ethene-C_water dD=D_ethanol-D_ethene-D_water // Values from Table C.4 at T=298.15K H_ethanol=-235100;//[J/mol] H_ethene=52510;//[J/mol] H_water=-241572;//[J/mol] G_ethanol=-168490;//[J/mol] G_ethene=68460;//[J/mol] G_water=-228572;//[J/mol] dHo=H_ethanol-H_ethene-H_water dGo=G_ethanol-G_ethene-G_water I1=approx(IDCPH(T0,T1,dA,dB,dC,dD),3) I2=approx(IDCPS(T0,T1,dA,dB,dC,dD),5) //Using Eqn 13.18 //dG_418/RT=((dGo - dHo)/RTo)+(dHo/RT)+((1/T)*I1)-I2 c1=dG_418/RT c1=approx(((dGo-dHo)/(R*T0))+(dHo/(R*T1))+((1/T1)*I1)-I2,4) I3=approx(IDCPH(T0,T2,dA,dB,dC,dD),3) I4=approx(IDCPS(T0,T2,dA,dB,dC,dD),5) //Using Eqn 13.18 //dG_593/RT=((dGo - dHo)/RTo)+(dHo/RT)+((1/T)*I1)-I2 c2=dG_593/RT c2=approx(((dGo-dHo)/(R*T0))+(dHo/(R*T2))+((1/T2)*I3)-I4,4) K_413=approx(exp(-c1),4); K_593=exp(-c2); disp('X 10^-1',K_413*10,'Equilibrium Constant at T = 413.15K is ') disp('X 10^-3',approx(K_593*1000,3),'Equilibrium Constant at T = 593.15K is ') //End