// Example 3.12, page no-100 clear clc theta_l=60 //earth station's location 60°W longitude theta_s=105 //satellite's location 105°W longitude theta_L=30 //earth station's location 30°N latitude theta_l1=90 //earth station's location 90°W longitude theta_s1=105 //satellite's location 105°W longitude theta_L1=45 //earth station's location 45°N latitude c=3*10^8 //speed of light r=42164 // orbital radius of the satellite in km R=6378 //Earth's radius in km x=(180/%pi)*acos(cosd(theta_s-theta_l)*cosd(theta_L)) y=r-ceil(R*(cosd(theta_s-theta_l)*cosd(theta_L))) z=R*sind(x) E=(atan(y/z)*180/%pi)-x x1=(180/%pi)*acos(cosd(theta_s1-theta_l1)*cosd(theta_L1)) y1=r-ceil(R*(cosd(theta_s1-theta_l1)*cosd(theta_L1))) z1=R*sind(x1) E1=(atan(y1/z1)*180/%pi)-x1 E1=floor(E1) //calculation of slant range dx k=(R/r)*cosd(E) k=(180/%pi)*asin(k) k=k+E k=sind(k) k=ceil(k*1000)/1000 //k=k+E //k=sin(k) dx=(R)^2+(r)^2-(2*r*R*k) dx=sqrt(dx) //calculation of slant range dy k1=(R/r)*cosd(E1) k1=(180/%pi)*asin(k1) k1=k1+E1 k1=floor(k1) k1=sind(k1) k1=ceil(k1*1000)/1000 dy=(R)^2+(r)^2-(2*r*R*k1) dy=sqrt(dy) tr=dy+dx delay=tr*10^6/c x=50 td=delay+x printf("Elevation angle, Ex =%.1f°",E) printf("\n Elevation angle, Ey =%.1f°",floor(E1)) printf("\n Slant range dx of the earth station X is dx=%.2fkm",dx) printf("\n Slant range dy of the earth station Y is dy=%.1fkm",dy) printf("\n Therefore, total range to be covered is %.2fkm",tr) printf("\n propagation delay=%.2fms",delay) printf("\n\n Time required too transmit 500 kbs of information at \n a transmisssion speed of 10Mbps is given by 500000/10^7=%.0fms",500000000/10^7) printf("\n\n Total Delay= %.2fms",td)