//calculating rotor starting current per phase on normal voltage with slip ring short-circuited V=400//voltage applied to the stator winding V1=V/sqrt(3)//phase voltage k=2.5//transformation ratio R2=.02//rotor resistance per phase //at standstill s=1//slip E2=V1/k//induced phase voltage in the rotor winding X2=2*%pi*50*.6D-3//rotor reactance per phase Z2=sqrt(R2^2+X2^2) I2=E2/Z2 mprintf("Rotor starting current per phase on normal voltage with slip ring short-circuited=%f A\n",I2) //calculating rotor power factor at starting pf=R2/Z2 mprintf("Rotor power factor at starting=%f\n",pf) //calculating rotor current per phase at 3 % slip s=.03//slip E2=s*E2 X2=s*X2 Z2=sqrt(R2^2+X2^2) I2=E2/Z2 mprintf("Rotor current per phase at 3 percent slip=%f A\n",I2) //calculating rotor power factor at 3% slip pf=R2/Z2 mprintf("Rotor power factor at 3 percent slip=%f",pf) //answers vary from the textbook due to round off error