// scilab Code Exa 9.4 axial turbine stage 3000 rpm d=1; // mean diameter of the impeller blade in m r=d/2; N=3e3; // rotor Speed in RPM a_r(1)=1; // aspect ratio a_r(2)=2; a_r(3)=3; alpha2=70; // air angle at nozzle exit alpha3=0; beta_2=54; // air angle at rotor entry sigma=0.5*(sind(alpha2)); // blade to gas speed ratio u=%pi*d*N/60; c2=u/sigma; cx=c2*(cosd(alpha2)); beta_3=beta_2; // air angle at rotor exit phi=cx/u; e_R=beta_2+beta_3; // Rotor deflection angle zeeta_p_N=0.025*(1+((alpha2/90)^2)); // profile loss coefficient for nozzle zeeta_p_R=0.025*(1+((e_R/90)^2)); // profile loss coefficient for rotor for i=1:3 disp(a_r(i),"when Aspect ratio=") zeeta_N=(1+(3.2/a_r(i)))*zeeta_p_N; // total loss coefficient for nozzle zeeta_R=(1+(3.2/a_r(i)))*zeeta_p_R; // total loss coefficient for rotor a=(zeeta_R*(secd(beta_3)^2))+(zeeta_N*(secd(alpha2)^2)); b=phi*(tand(alpha2)+tand(beta_3))-1; c=(zeeta_R*(secd(beta_3)^2))+(zeeta_N*(secd(alpha2)^2))+(secd(alpha3)^2); n_tt=inv(1+(0.5*(phi^2)*(a/b))); disp("%",n_tt*1e2,"total-to-total efficiency is") n_ts=inv(1+(0.5*(phi^2)*(c/b))); disp("%",n_ts*1e2,"total-to-static efficiency is") end