// scilab Code Exa 7.1 Calculation for the specific speed funcprot(0) //part(a)specific speed of gas turbine P=2e3; // Gas Turbine Power Output in kW N=16e3; // Speed in RPM T1=1e3; // Entry Temperature in Kelvin p1=50; // Entry Pressure in bar p2=25; // Exit Pressure in bar cp=1.15e3; // Specific Heat at Constant Pressure in J/(kgK) gamma_g=1.3; omega=%pi*2*N/60; ro=p1*1e5/(((gamma_g-1)/gamma_g)*cp*T1); pr=p2/p1; // pressure ratio T2s=T1*(pr^((gamma_g-1)/gamma_g)); delh_s=cp*(T1-T2s); NS=omega*sqrt(P*10e2/ro)*delh_s^(-5/4) disp(NS,"(a)the specific speed of gas turbine is") // part(b)the specific speed of a centrifugal compressor pr_b=2; // Compressor pressure ratio N_b=24e3; // Speed in RPM m=1.5; // in kg/s cp_a=1.005e3; // Specific Heat of air at Constant Pressure in kJ/(kgK) R=0.287; gamma=1.4; T1_b=300; // Entry Temperature in Kelvin p1_b=1; // Entry Pressure in bar ro_b=p1_b*1e2/(R*T1_b); omega_b=%pi*2*N_b/60; Q=m/ro_b; T2=T1_b*(pr_b^((gamma-1)/gamma)); delh_s_b=cp_a*(T2-T1_b); NS_b=omega_b*sqrt(Q)*delh_s_b^(-3/4); disp(NS_b,"(b)the specific speed of a centrifugal compressor is") // part(c)the specific speed of an axial compressor pr_c=1.4; // Compressor pressure ratio N_c=6e3; // Speed in RPM m_c=15; // in kg/s omega_c=%pi*2*N_c/60; Q_c=m_c/ro_b; T2_c=T1_b*(pr_c^((gamma-1)/gamma)); delh_s_c=cp_a*(T2_c-T1_b); NS_c=omega_c*sqrt(Q_c)*delh_s_c^(-3/4) disp(NS_c,"(c)the specific speed of an axial compressor is")