// scilab Code Exa 3.5 Calculations on Gas Turbine Plant P=10e4; // Power Output in kW T1=310; // Minimum cycle Temperature in Kelvin p1=1.013; // Compressor Inlet Pressure in bar pr_c=8; // Compressor pressure ratio gamma=1.4; gamma_g=1.33; R=0.287; p2=pr_c*p1; // Compressor Exit Pressure in bar T3=1350; // Maximum cycle Temperature(Turbine inlet temp) in Kelvin n_c=0.85; // Compressor Efficiency p3=0.98*p2; // turbine inlet pressure p4=1.02; // turbine exit pressure in bar CV=40*10e2; // Calorific Value of fuel in kJ/kg; n_B=0.98; // Combustion Efficiency n_m=0.97; // Mechanical efficiency n_t=0.9; // Turbine Efficiency n_G=0.98; // Generator Efficiency cp_a=1.005; // Specific Heat of air at Constant Pressure in kJ/(kgK) // Air Compressor T2s=T1*(pr_c^((gamma-1)/gamma)); T2=T1+((T2s-T1)/n_c); w_c=cp_a*(T2-T1); // Gas Turbine n_g=(gamma_g-1)/gamma_g; cp_g=1.157; // Specific Heat of gas at Constant Pressure in kJ/(kgK) pr_t=p3/p4; T4s=T3/(pr_t^((gamma_g-1)/gamma_g)); T4=T3-(n_t*(T3-T4s)); w_t=cp_g*(T3-T4); w_net=w_t-w_c; w_g=n_m*n_G*w_net; // part(a) Determining Gas Flow Rate m_g=P/w_g; disp ("kg/s",m_g,"(a)Gas flow rate is") // part(b) Determining Fuel-Air Ratio F_A=((cp_g*T3)-(cp_a*T2))/((CV*n_B)-(cp_g*T3)); disp(F_A,"(b)Fuel-Air Ratio is") // part(c) Air flow rate m_a=m_g/(1+F_A); disp("kg/s",m_a,"(c)Air flow rate is") // part(d) Determining thermal efficiency of the plant m_f=m_g-m_a; n_th=m_g*w_net/(m_f*CV); disp ("%",n_th*100,"(d)thermal efficiency of the plant is") // part(e) Determining Overall efficiency of the plant n_o=n_m*n_G*n_th; disp ("%",n_o*100,"(e)overall efficiency of the plant is") // part(f) Determining ideal Joule cycle efficiency n_Joule=1-(1/(pr_c^((gamma-1)/gamma))); disp ("%",n_Joule*100,"(f)efficiency of the ideal Joule cycle is")