// scilab Code Exa 3.2 Gas Turbine Plant with an exhaust HE T1=300; // Minimum cycle Temperature in Kelvin funcprot(0); pr=10; // pressure ratio of the turbine and compressor T3=1500; // Maximum cycle Temperature in Kelvin m=10; // mass flow rate through the turbine and compressor in kg/s e(1)=0.8; // thermal ratio of the heat exchanger e(2)=1; n_c=0.82; // Compressor Efficiency n_t=0.85; // Turbine Efficiency gamma=1.4; // Specific Heat Ratio cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK) beeta=T3/T1; T2s=T1*(pr^((gamma-1)/gamma)); T2=T1+((T2s-T1)/n_c); T4s=T3*(pr^(-((gamma-1)/gamma))); T4=T3-((T3-T4s)*n_t); for i=1:2 T5=T2+e(i)*(T4-T2); T6=T4-(T5-T2); Q_s=cp*(T3-T5); Q_r=cp*(T6-T1); // part(a) Determining power developed w_p=Q_s-Q_r; P=m*w_p; printf("for effectiveness=%f, \n (a)the power developed is %f kW",e(i),P) // part(b) Determining thermal efficiency of the plant n_th=1-(Q_r/Q_s); disp ("%",n_th*100,"(b)thermal efficiency of the plant is") end // part(c) Determining efficiencies of the ideal Joules cycle n_Joule=1-(pr^((gamma-1)/gamma)/beeta); disp("%",n_Joule*100,"(c)efficiency of the ideal Joules cycle with perfect heat exchange is") n_Carnot=1-(T1/T3); disp("%",n_Carnot*100,"and the Carnot cycle efficiency is")