// scilab Code Exa 18.9 Constant Pressure Gas Turbine Plant T1=298; // Minimum Temperature in Kelvin beeta=4.5; // Maximum to Minimum Temperature ratio(T_max/T_min) m=115; // mass flow rate through the turbine and compressor in kg/s n_C=0.79; // Compressor Efficiency n_T=0.83; // Turbine Efficiency gamma_g=1.33; R=0.287; cp=(gamma_g/(gamma_g-1))*R; // Specific Heat at Constant Pressure in kJ/(kgK) alpha=beeta*n_C*n_T; t_opt=sqrt(alpha); // For maximum power output, the temperature ratios in the turbine and compressor // part(a) Determining optimum pressure ratio of the plant r=t_opt^(gamma_g/(gamma_g-1)); disp(r,"(a)optimum pressure ratio of the plant is") // part(b)Carnot's efficiency n_Carnot=1-(1/beeta); disp("%",n_Carnot*100,"(b)Carnot efficiency of the plant is") // part(c) Determining Joule's cycle efficiency n_Joule=1-(1/t_opt); disp("%",n_Joule*100,"(c)efficiency of the Joule cycle is") // part(d) Determining thermal efficiency of the plant for maximum power output n_th=(t_opt-1)^2/((beeta-1)*n_C-(t_opt-1)); disp("%",n_th*100,"(d)thermal efficiency of the plant for maximum power output is") // part(e) Determining power output wp_max=cp*T1*((t_opt-1)^2)/n_C; // maximum work output P_max=m*wp_max; disp ("MW",P_max/1e3,"(e)Power output is") // part(f) Determining power generated by the turbine required to drive the compressor T3=beeta*T1; // Maximum Temperature in degree K T4s=T3*(r^(-((gamma_g-1)/gamma_g))); T4=T3-((T3-T4s)*n_T); P_T=m*cp*(T3-T4); disp ("MW",P_T/1e3,"(f)Power generated by the turbine is") // part(g) Determining power absorbed by the compressor T2s=T1*(r^((gamma_g-1)/gamma_g)); T2=T1+((T2s-T1)/n_C); P_C=m*cp*(T2-T1); disp ("MW",P_C/1e3,"(g)Power absorbed by the compressor is") //part(h)heat supplied in the combustion chamber Qs=m*cp*(T3-T2); disp("MW",Qs/1e3,"(h)heat supplied in the combustion chamber is")