// scilab Code Exa 18.47 Crossflow Radial Hydro turbine N=50; // Speed in RPM H=25; // net head in m Q=150; // discharge in m3/s P=20; // Power Output in MW d1=3.5; // runner diameter in m dr=1.3; // diameter ratio of the runner rho=1000; // density in kg/m3 g=9.81; // gravitational acceleration in m/s2 u1=%pi*d1*N/60; u2=u1/dr; c_theta1=2*u1; c_theta2=u2; w_st1=(u1*c_theta1)-(u2*c_theta2); u3=u2; c_theta3=u2; c_theta4=0; w_st2=(u3*c_theta3)-(u1*c_theta4); w_st=w_st1+w_st2; // part(a) n_h=w_st/(g*H); disp("%",n_h*1e2,"(a)the hydraulic efficiency is") Ph=rho*Q*w_st; disp("MW",Ph*1e-6,"and the hydraulic power is") n_o=P*1e6/(rho*Q*g*H); disp("%",n_o*1e2,"and the overall efficiency is") // part(b) omega=%pi*2*N/60; NS=omega*sqrt(P*1e6)*(H^(-5/4))/549.016; disp(NS,"(b)the specific speed of turbine is") // part(c) disp("(c)Adopting the flow model of the crossflow wind turbine") P_h=rho*Q*((2*(u1^2))+(u2^2)); disp("MW",P_h*1e-6,"the hydraulic power is") nh=((2*(u1^2))+(u2^2))/(g*H); disp("%",nh*1e2,"and hydraulic efficiency is")