// scilab Code Exa 18.44 Pelton Wheel 360 rpm d=2; // mean diameter in m N=360; // Speed in RPM theta=150; //deflection angle of water jet in degree H=140; // net head for the model in m q=45000; // discharge in litres/min Q=q*1e-3/60; // in m3/s rho=1000; // density in kg/m3 g=9.81; // gravitational acceleration in m/s2 // part(a) u=%pi*d*N/60; c2=sqrt(2*g*H); sigma=u/c2; disp(sigma,"(a)blade to jet speed ratio is") // part(b) w2=c2-u; w3=w2; beta2=0; beta3=180-theta; cy2=c2; cy3=u-(w3*cosd(beta3)); w_T=u*(cy2-cy3); m=rho*Q; P_T=m*w_T; disp("kW",P_T*1e-3,"(b)the power developed is") // part(c) n=w_T/(0.5*(c2^2)); disp("%",n*1e2,"(c)the efficiency is") // part(d) n_max=0.5*(1+cosd(beta3)); disp("%",n_max*1e2,"(d)the Maximum efficiency is") P_max=m*g*H*n_max; disp("kW",P_max*1e-3,"and the Maximum power developed is") // part(e) sigma_opt=0.5; // for Maximum efficiency u_opt=sigma_opt*c2; N_opt=u_opt*60/(d*%pi); disp("rpm",N_opt,"(e)speed of the rotation corresponding to Maximum efficiency is") // part(f) omega=%pi*2*N/60; NS=omega*sqrt(P_T)*(H^(-5/4))/549.016; disp(NS,"(f)the specific speed of turbine is")