// scilab Code Exa 18.31 Cantilever Type IFR turbine P=150; // Power developed in kW T01=960; // the gas entry temperature at nozzle in Kelvin p01=3; // the gas entry pressure at nozzle in bar beta2=45; // air angle at rotor blade entry (from radial direction) beta3=65; // air angle at rotor blade exit (from radial direction) d2=0.2; // rotor blade ring diameter at entry in m d3=0.15; // rotor blade ring diameter at exit in m gamma=1.4; N=36e3; // rotor Speed in RPM alpha_2=15; // air angle at nozzle exit(from tangential direction) pr0=2.29; // total-to-static Pressure Ratio(p01/p3) n_N=0.94; // Nozzle Efficiency cp=1100; // Specific Heat at Constant Pressure in J/(kgK) R=cp*((gamma-1)/gamma); u2=%pi*d2*N/60; u3=%pi*d3*N/60; // part(a) mass flow rate of the gas cr2_theta2=tand(alpha_2); // cr2_theta2=cr2/c_theta2 c_theta2=u2/(1-cr2_theta2); // c_theta2=cr2*tan(alpha2)+u2 cr2=c_theta2*cr2_theta2; cr3=cr2; c_theta3=(cr3*tand(beta3))-u3; w_st=(u2*c_theta2)+(u3*c_theta3); m=P/(w_st*1e-3); disp("kg/s",m,"(a)mass flow rate of the gas is") // part(b)rotor blade axial length at entry c2=cr2/sind(alpha_2); T2s=T01-((0.5*(c2^2))/(cp*n_N)); T2=T01-((T01-T2s)*n_N); p_rn=(T2s/T01)^(gamma/(gamma-1)); p2=p01*p_rn; rho2=(p2*1e5)/(R*T2); b2=m/(rho2*cr2*%pi*d2); disp("cm",b2*1e2,"(b)rotor blade axial length at entry is") // part(c)total-to-total turbine efficiency T03ss=T01*(pr0^((1-gamma)/gamma)); n_T=P/(m*cp*1e-3*(T01-T03ss)); disp("%",n_T*1e2,"(c)total-to-total turbine efficiency is") //part(d)rotor blade length at exit p03=p01/pr0; T03=T01-(P/(m*cp*1e-3)); c3=sqrt((cr3^2)+(c_theta3^2)); T3=T03-((cr3^2)/(2*cp)); p3=p03*((T3/T03)^(gamma/(gamma-1))); ro3=(p3*1e5)/(R*T3); b3=m/(ro3*cr3*%pi*d3); disp("cm",b3*1e2,"(d)rotor blade length at exit is") // part(e) degree of reaction DOR=(T2-T3)/(T01-T03); disp("%",DOR*1e2,"(e)degree of reaction is")