// scilab Code Exa 18.2 Steam Turbine nozzle t1=550; // Entry Temperature in Kelvin p1=170; // Inlet Pressure in bar p2=120.7; // Exit Pressure in bar d=1; // Mean Blade ring diameter in m alpha_2=70; // nozzle angle in degree gamma_g=1.3; // for superheated steam R=0.5*1e3; // in J/kgK m=280; // in kg/s // part(a) exit velocity c2 of steam h1=3440; // from superheated steam tables at p1 and t1 h2=3350; // at p2 t2=503; // at p2 in degree C v_s2=0.0268; // Specific Volume at p2 in m3/kg c_2=sqrt((h1-h2)*1e3/0.5); disp("m/s",c_2,"(a)the nozzle exit velocity is") // part(b) T2=t2+273; a2=sqrt(gamma_g*R*T2); M2=c_2/a2; disp(M2,"(b)and the exit Mach number is") // part(c) cx=c_2*cosd(alpha_2); h=m*v_s2/(%pi*cx*d); disp("cm",h*1e2,"(c)nozzle blade height at exit is") T2s=0.87*(t1+273); // T2s/T1=0.87 from gas tables p2s=0.546*p1; // p2s/p1=0.546 from gas tables vs_s=0.031; // from steam tables a_s=sqrt(gamma_g*R*T2s); disp("m/s",a_s,"the corresponding nozzle exit velocity is") cx_s=a_s*cosd(alpha_2); m_max=cx_s*%pi*d*h/(vs_s); disp("kg/s",m_max,"the maximum possible mass flow rate is")