// scilab Code Exa 18.1 Gas Turbine nozzle row T1=600; // Entry Temperature of the gas in Kelvin p1=10; // Inlet Pressure in bar gamma_g=1.3; delT=32; // Temperature drop of the gas(T1-T2) in K cp_g=1.23*1e3; // Specific Heat of gas at Constant Pressure in kJ/(kgK) pr1_2=1.3; // pressure ratio(p1/p2) T2s=T1/(pr1_2^((gamma_g-1)/gamma_g)); delTs=T1-T2s; // part(a) nozzle efficiency n_N=delT/delTs; disp("%",n_N*100,"(a) nozzle efficiency is") // part(b) disp("(b)(i)for ideal flow:") p2=p1/pr1_2; h_01=cp_g*T1; h2s=cp_g*T2s; c_2s=sqrt((h_01-h2s)/0.5); disp("m/s",c_2s,"the nozzle exit velocity is") R_g=cp_g*((gamma_g-1)/gamma_g); M_2s=c_2s/(sqrt(gamma_g*R_g*T2s)); disp(M_2s,"and the Mach number is") disp("(b)(ii)for actual flow:") T2=T1-delT; a2=sqrt(gamma_g*R_g*T2); c_2=sqrt((cp_g*delT)/0.5); disp("m/s",c_2,"the nozzle exit velocity is") M2=c_2/a2; disp(M2,"and the Mach number is") // part(c) stagnation pressure loss across the nozzle p01=p1; p02=p2/0.79; // from isentropic gas tables p2/p02=0.79 at gamma=1.3 and M2=0.613 delp0=p01-p02; disp("bar",delp0,"(c)the stagnation pressure loss across the nozzle is") // part(d) nozzle efficiency based on stagnation pressure loss delp=p1-p2; n_N_a=1-(delp0/delp); disp("%",n_N_a*100,"(d)the nozzle efficiency based on stagnation pressure loss is")