// scilab Code Exa 11.6 General Swirl Distribution axial compressor Rm=0.5; // Degree of reaction dm=36/100; // Mean Blade ring diameter in m rm=dm/2; N=18e3; // rotor Speed in RPM h=6/100; // blade height at entry in m dh=dm-h; dt=dm+h; cx=180; // Axial velocity in m/s alpha_1m=25; // air angle at rotor and stator exit alpha_2m=54.820124; um=%pi*dm*N/60; omega=um/rm; rh=dh/2; rt=dt/2; uh=omega*rh; ut=omega*rt; // part(a) rotor blade air angles c_theta1m=cx*tand(alpha_1m); c_theta2m=cx*tand(alpha_2m); a=0.5*(c_theta1m+c_theta2m) b=rm*(c_theta2m-c_theta1m)*0.5; c_theta1h=a-(b/rh); c_theta1t=a-(b/rt); K1=cx^2+(2*(a^2)*((b/(a*rm))+log(rm))); cx1h=sqrt(K1-(2*(a^2)*((b/(a*rh))+log(rh)))); cx1t=sqrt(K1-(2*(a^2)*((b/(a*rt))+log(rt)))); c_theta2h=a+(b/rh); c_theta2t=a+(b/rt); K2=cx^2+(2*(a^2)*(log(rm)-(b/(a*rm)))); cx2h=sqrt(K2-(2*(a^2)*(log(rh)-(b/(a*rh))))); cx2t=sqrt(K2-(2*(a^2)*(log(rt)-(b/(a*rt))))); disp("(a) the rotor blade air angles are") // for hub section alpha1h=atand(c_theta1h/cx1h); alpha2h=atand(c_theta2h/cx2h); disp("for hub section") beta1h=atand((uh/cx1h)-tand(alpha1h)); beta2h=atand((uh/cx2h)-tand(alpha2h)); disp("degree",beta1h,"beta1h=") disp("degree",beta2h,"beta2h=") // for tip section alpha1t=atand(c_theta1t/cx1t); alpha2t=atand(c_theta2t/cx2t); disp("for tip section") beta1t=atand((ut/cx1t)-tand(alpha1t)); beta2t=atand((ut/cx2t)-tand(alpha2t)); disp("degree",beta1t,"beta1t= ") disp("degree",beta2t,"beta2t= ") // part(b) specific work w=2*omega*b; disp("kJ/kg",w*1e-3,"(b)specific work is") // part(c) the loading coefficients disp("(c)the loading coefficients are") shi_h=w/(uh^2); disp(shi_h,"shi_h=") shi_m=w/(um^2); disp(shi_m,"shi_m=") shi_t=w/(ut^2); disp(shi_t,"shi_t=") // part(c) degrees of reaction disp("(d)Degrees of reaction are") Rh=((cx1h^2)*(secd(beta1h)^2)-(cx2h^2)*(secd(beta2h)^2))*100/(2*w); Rt=((cx1t^2)*(secd(beta1t)^2)-(cx2t^2)*(secd(beta2t)^2))*100/(2*w); disp("%",Rh,"Rh=") disp("%",Rm*100,"Rm=") disp("%",Rt,"Rt=") disp("Comment: book contains wrong calculation for Rt value")