// chapter 2 example 2 //------------------------------------------------------------------------------ clc; clear; // ur1 = 3 // ur2 = 5 // B1 = 2ax + ay // choosing the unit normal an = (ay + az)/√2 // |Bn1| = ((2ax + ay)*(ay + az))/√2 = 1/√2 //Therefore Bn1 = 1/√2an = (1/√2)*(ay + az)/√2 // Also, Bn2 = Bn1 = 0.5ay + 0.5az // the tangential component of B1 is given by // Bt1 = B1 - Bn1 = (2ax + ay)-(0.5ay + 0.5az) // = 2ax + 0.5ay - 0.5az // this gives Ht1 = (1/µo)((2/3)ax + (0.5/3)ay - (0.5/3)az) // Ht1 = (1/µo)*(0.66ax + 0.16ay -0.16az) = Ht2 // Bt2 = µoµr2Ht2 = 3.3ax + 0.8ay - 0.8az // now B2 = Bn2 + Bt2 = (0.5ay + 0.5az)+(3.3ax + 0.8ay - 0.8az) // = (3.3ax +1.3ay - 0.3az) // H2 = (1/µo)*((3.3/5)ax + (1.3/5)ay - (0.3/5)az) // H2 = (1/µo)*(0.66ax +0.26ay - 0.06az) mprintf('B2 = (3.3ax +1.3ay - 0.3az)\n H2 = (1/µo)*(0.66ax +0.26ay - 0.06az)' ); //------------------------------------------------------------------------------