// Chapter 11 example 13 //------------------------------------------------------------------------------ clc; clear; // Given data apogee = 35000; // farthest point in kms perigee = 500; // closest point in kms r = 6360; // radius of earth in kms G = 6.67*10^-11 // gravitational constant M = 5.98*10^24; // mass of earth in kgs // calculations //funcprot(0) apogee_dist = apogee + r // apogee distance in kms perigee_dist= perigee+r ; // perigee distance in kms a = (apogee_dist + perigee_dist)/2; // semi-major axis of elliptical orbit T = (2*%pi)*sqrt((a*10^3)^3/(G*M)); // orbital time period hr = T/3600 // conv. from sec to hrs and min t = modulo(T,3600) // conv. from sec to hrs and min mi = t/60 // conv. from sec to hrs and min u = G*M Vapogee = sqrt(u*((2/(apogee_dist*10^3)) - (1/(a*10^3)))); // velocity at apogee point Vperigee = sqrt((G*M)*((2/(perigee_dist*10^3)-(1/(a*10^3))))) // velocity at perigee point // Output mprintf('Orbital Time Period = %d Hrs %d min \n Velocity at apogee = %3.3f Km/s\n Velocity at perigee = %3.3f Km/s',hr,mi,Vapogee/1000,Vperigee/1000) mprintf('\n Note: Calculation mistake in textbook in finding velocity at apogee point')