//signals and systems //Inverse Z Transform:ROC |z|>2 z = %z; syms n z1;//To find out Inverse z transform z must be linear z = z1 X =-z*(z+0.4)/((z-0.8)*(z-2)) X1 = denom(X); zp = roots(X1); X1 = -z1*(z1+0.4)/((z1-0.8)*(z1-2)) F1 = X1*(z1^(n-1))*(z1-zp(1)); F2 = X1*(z1^(n-1))*(z1-zp(2)); h1 = limit(F1,z1,zp(1)); disp(h1,'h1[n]=') h2 = limit(F2,z1,zp(2)); disp(h2,'h2[n]=') h = h1+h2; disp(h,'h[n]=') //Inverse Z Transform:ROC 0.8<|z|<2 z = %z; syms n z1; X =-z*(z+0.4)/((z-0.8)*(z-2)) X1 = denom(X); zp = roots(X1); X1 = -z1*(z1+0.4)/((z1-0.8)*(z1-2)) F1 = X1*(z1^(n-1))*(z1-zp(1)); F2 = X1*(z1^(n-1))*(z1-zp(2)); h1 = limit(F1,z1,zp(1)); disp(h1*'u(n)','h1[n]=') h2 = limit(F2,z1,zp(2)); disp((h2)*'u(-n-1)','h2[n]=') disp((h1)*'u(n)'-(h2)*'u(n-1)','h[n]=') //Inverse Z Transform:ROC |z|<0.8 z = %z; syms n z1; X =-z*(z+0.4)/((z-0.8)*(z-2)) X1 = denom(X); zp = roots(X1); X1 = -z1*(z1+0.4)/((z1-0.8)*(z1-2)) F1 = X1*(z1^(n-1))*(z1-zp(1)); F2 = X1*(z1^(n-1))*(z1-zp(2)); h1 = limit(F1,z1,zp(1)); disp(h1*'u(-n-1)','h1[n]=') h2 = limit(F2,z1,zp(2)); disp((h2)*'u(-n-1)','h2[n]=') disp(-(h1)*'u(-n-1)'-(h2)*'u(-n-1)','h[n]=')