clear close clc //Example 18.1 //From the figure 18.2 disp('The equation of v(t) considering one period can be written as') disp('v(t)=Vm*cos(5*%pi*t) for -0.1<=t<=0.1') disp('v(t)=0 for 0.1<=t<=0.3') //Assuming the value of Vm is 1 //Evaluating the constants an and bn //bn=0 for all n //an=(2*Vm*cos(n*%pi/2))/(%pi*(1-n^2)) //a0=Vm/%pi t=-1:0.02:1; Vm=ones(1,length(t)); v0t=Vm/%pi; v1t=(Vm.*cos(5*%pi*t)).*0.5; v0t_v1t=v0t+v1t; v2t=(2/(3*%pi))*(Vm.*cos(10*%pi*t)); v0t_v1t_v2t=v0t+v1t+v2t; v3t=(2/(15*%pi))*(Vm.*cos(20*%pi*t)); v0t_v1t_v2t_v3t=v0t+v1t+v2t-v3t; figure a = gca (); a. y_location = "origin"; a. x_location = "origin"; a. data_bounds =[ -1,0;1 0.5]; plot (t,v0t) xtitle('vot vs t','t in s','vot') figure a = gca (); a. y_location = "origin"; a. x_location = "origin"; a. data_bounds =[ -1,-0.5;1 0.5]; plot (t,v0t_v1t) a. y_location = "origin"; a. x_location = "origin"; a. data_bounds =[ -1,-0.5;1 0.5]; plot (t,v0t_v1t_v2t,'r.->') a. y_location = "origin"; a. x_location = "origin"; a. data_bounds =[ -1,-0.5;1 0.5]; plot (t,v0t_v1t_v2t_v3t,'d') xtitle('v(t)','t in s','v(t) in V')