// Exa 2.13 clc; clear; close; // Given data q=1.6*10^-19;// in C rho=75;//in Ωcm N_D= 10^13;// in /cm^3 N_A= 5*10^12;//in /cm^3 E=3;// in V/cm ni= 2.7*10^12;// in /cm^3 sigma= 1/rho;// in (Ωcm)^-1 // miu_p/miu_n= 1/3 or miu_n=3*miu_p // sigma= q*ni*(miu_n+miu_p) = q*ni*(3*miu_p+miu_p) = q*ni*(4*miu_p) miu_p= sigma/(q*ni*4); miu_n= 3*miu_p; // n+N_A= p+N_D or n= p+N_D-N_A // n*p= ni^2 or (p+N_D-N_A)*p= ni^2 // p^2 + (N_D-N_A)*p-ni^2 =0 // values= [1 (N_D-N_A) -ni^2]; p = roots([1 5*10^12 -7.29*10^24]) p=p(2);//discarding -ve value n=p+N_D-N_A; I= q*(n*miu_n+p*miu_p)*E// in A/m^2 disp(I,"The total conduction current in A/m^2 is : ") // Note: There is some difference between book answer and coding. The reson behind this is that // The value of P is evaluated 1.8*10^12 while accurate value is 1.179674*10^12