// Exa 2.10 clc; clear; close; // Given data ni= 1.8*10^15;// in /m^3 rho= 2*10^5;// in Ωm q=1.6*10^-19;// in C dopingConcentration= 10^25;// in /m^3 n=dopingConcentration; MCC= ni^2/dopingConcentration; // Minority carrier concentration per cube meter miu_n= 1/(2*rho*q*ni);// in m^3/Vs disp(miu_n,"The value of µn in m^3/Vs is : ") // Part (b) sigma= q*n*miu_n;//in (Ωm)^-1 rho= 1/sigma;// in Ωm disp(rho,"Resistivity in Ωm is : ") // Part(c) kT= 26*10^-3;//in V no= n;// in /m^3 Shift_inFermiLevel= kT*log(no/ni);// in eV disp(Shift_inFermiLevel,"Shift in Fermi level due to doping in eV is :") disp("Hence, E_F lies "+string(Shift_inFermiLevel)+" eV above Fermi level Ei") // Part (d) MCC= ni^2/dopingConcentration; // Minority carrier concentration per cube meter disp(MCC,"Minority carrier concentration per cube meter when its temperature is increased is : ")