//example 4.4 //calculate precipitation at A by inverse distance method clc;funcprot(0); //given pB=74; //precipitation at B pC=88; //precpitation at C pD=71; //precipitation at D pE=80; //precipitation at E Bx=9;By=6; Cx=12;Cy=-9; Dx=-11;Dy=-6; Ex=-7;Ey=7; Ax=0;Ay=0; Db=(Bx^2+By^2); Dc=(Cx^2+Cy^2); Dd=(Dx^2+Dy^2); De=(Ex^2+Ey^2); Wb=1/Db; Wc=1/Dc; Wd=1/Dd; We=1/De; s=pB*Wb+pC*Wc+pD*Wd+pE*We; pA=s/(Wb+Wc+Wd+We); pA=round(pA*10)/10; mprintf("precipitation at A=%f mm.",pA);