//example 12.1 //calculate average hydraulic gradient //uplift presuures and thickness of floor at 6m, 12m and 18m from u/s clc;funcprot(0); //given rho=2.24; //relative density of material gamma_w=9.81; //unit weigth of water L=22; //total length lc=(2*6)+L+(2*8); //length of creep hg=4/lc; //hydraulic gradient mprintf("avearge hydraulic gradient=%f.",hg); //at 6 m from u/s x=6; lg=(6*2)+x; h1=4*(1-lg/50); //unbalanced head up=gamma_w*h1; t=4*h1/(3*(rho-1)); up=round(up*100)/100; t=round(t*100)/100; mprintf("\n\nuplift at 6 m from u/s=%f kN/square metre.",up); mprintf("\nthickness at 6 m from u/s=%f m.",t); //at 12 m from u/s x=12; lg=(6*2)+x; h1=4*(1-lg/50); //unbalanced head up=gamma_w*h1; t=4*h1/(3*(rho-1)); up=round(up*100)/100; t=round(t*100)/100; mprintf("\n\nuplift at 12 m from u/s=%f kN/square metre.",up); mprintf("\nthickness at 12 m from u/s=%f m.",t); //at 18m from u/s x=18; lg=(6*2)+x; h1=4*(1-lg/50); //unbalanced head up=gamma_w*h1; t=4*h1/(3*(rho-1)); up=round(up*10)/10; t=round(t*100)/100; mprintf("\n\nuplift at 18 m from u/s=%f kN/square metre.",up); mprintf("\nthickness at 18 m from u/s=%f m.",t);