// Computation of residues // 4.5 // Numerator and denominator coefficients // are passed in decreasing powers of z(say) function [res,pol,q] = respol(num,den) len = length(num); if num(len) == 0 num = num(1:len-1); end [resi,q] = pfe(num,den); res = resi(:,2); res = int(res) + (clean(res - int(res),1.d-04)); pol = resi(:,1); pol = int(pol) + (clean(pol - int(pol),1.d-04)); endfunction; /////////////////////////////////////////////////// // Partial fraction expansion function [resid1,q] = pfe(num,den) x = poly(0,'x'); s = %s; num2 = flip(num); den2 = flip(den); num = poly(num2,'s','coeff'); den = poly(den2,'s','coeff'); [fac,g] = factors(den); polf = polfact(den); n = 1; r = clean(real(roots(den)),1.d-5); //disp(r); l = length(r); r = gsort(r,'g','i'); r = [r; 0]; j = 1; t1 = 1; q = []; rr = 0; rr1 = [0 0]; m = 1; for i = j:l if abs(r(i)- r(i+1)) < 0.01 then r(i); r(i+1); n = n+1; m = n; //pause t1 = i; //disp('Repeated roots') else m = n; //pause n = 1; end i; if n == 1 then rr1 = [rr1; r(i) m]; //pause end; j = t1 + 1; end; rr2 = rr1(2:$,:); [r1,c1] = size(rr2); den1 = 1; for i = 1:r1 den1 = den1 * ((s-rr2(i,1))^(rr2(i,2))); end; [rem,quo] = pdiv(num,den); q = quo; if quo ~= 0 num = rem; end tf = num/den1; res1 = 0; res3 = [s 0]; res5 = [0 0]; for i = 1:r1 j = rr2(i,2) + 1; tf1 = tf; //strictly proper k = rr2(i,2); tf2 = ((s-rr2(i,1))^k)*tf1; rr2(i,1); res1 = horner(tf2,rr2(i,1)); res2 = [(s - rr2(i,1))^(rr2(i,2)) res1]; res4 = [rr2(i,1) res1]; res3 = [res3; res2]; res5 = [res5; res4]; res = res1; for m = 2:j-1 k; rr2(i,1); tf1 = derivat(tf2)/factorial(m-1); //ith derivative res = horner(tf1,rr2(i,1)); res2 = [(s - rr2(i,1))^(j-m) res]; res4 = [rr2(i,1) res]; res5 = [res5; res4]; res3 = [res3; res2]; tf2 = tf1; end; end; resid = res3(2:$,:); //with s terms resid1 = res5(2:$,:); //only poles(in decreasing no. of repetitions) endfunction; ////////////////////////////////////////////////////////////