// Calculates the GPC law for different prediction and control horizons // 12.9 function [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ... gpc_Nc(A,dA,B,dB,C,dC,k,N1,N2,Nu,rho) D=[1 -1]; dD=1; AD=convol(A,D); dAD=dA+1; zj = 1; dzj = 0; for i = 1:N1+k-1 zj = convol(zj,[0,1]); dzj = dzj + 1; end M = 2*k+N2-2+dB; P = max(k+N2+dA-1,dC-1) G = zeros(N2-N1+1,Nu+1); H1 = zeros(N2-N1+1,M); H2 = zeros(N2-N1+1,P+1); for j = k+N1:k+N2 zj = convol(zj,[0,1]); dzj = dzj + 1; [Fj,dFj,Ej,dEj] = xdync(zj,dzj,AD,dAD,C,dC); [Nj,dNj,Mj,dMj] = xdync(zj,dzj,C,dC,1,0); [Gj,dGj] = polmul(Mj,dMj,Ej,dEj); [Gj,dGj] = polmul(Gj,dGj,B,dB); [Pj,dPj] = polmul(Mj,dMj,Fj,dFj); [Pj,dPj] = poladd(Nj,dNj,Pj,dPj); if (j-k >= Nu) G(j-(k+N1-1),1:Nu+1) = flip(Gj(j-k-Nu+1:j-k+1)); else G(j-(k+N1-1),1:j-k+1) = flip(Gj(1:j-k+1)); end H1(j-(k+N1-1),1:j+k-2+dB) = Gj(j-k+2:2*j+dB-1); dPj = max(j-1+dA,dC-1); H2(j-(k+N1-1),1:dPj+1) = Pj; end K = inv(G'*G+rho*eye(Nu+1,Nu+1))*G'; // Note: inverse need not be calculated KH1 = K * H1; KH2 = K * H2; R1 = [1 KH1(1,:)]; dR1 = length(R1)-1; Sc = KH2(1,:); dSc = length(Sc)-1; Tc = K(1,:); dTc = length(Tc)-1; endfunction;