// Solution of Aryabhatta's identity Eq. 11.8, as discussed in Example 11.3 on page 409. // 11.3 exec('xdync.sci',-1); exec('rowjoin.sci',-1); exec('polsize.sci',-1); exec('left_prm.sci',-1); exec('t1calc.sci',-1); exec('indep.sci',-1); exec('seshft.sci',-1); exec('makezero.sci',-1); exec('move_sci.sci',-1); exec('colsplit.sci',-1); exec('clcoef.sci',-1); exec('cindep.sci',-1); C = [1 0.5]; dC = 1; j=2; A = [1 -0.6 -0.16]; dA = 2; zj = zeros(1,j+1); zj(j+1) = 1; [Fj,dFj,Ej,dEj] = xdync(zj,j,A,dA,C,dC)