// Example2_29_pg131.sce // Positive Negative and Zero sequence voltages // Theory of Alternating Current Machinery by Alexander Langsdorf // First Edition 1999, Thirty Second reprint // Tata McGraw Hill Publishing Company // Example in Page 131 clear; clc; close; // Given data V_1 = 1000 + 50*%i; V_2 = -800 + 100*%i; V_3 = -1100 - 270*%i; a = cos(2*%pi/3) + %i*sin(2*%pi/3); // Calculations disp('According to Equations 2-90, 2-88 and 2-89'); V_0 = (V_1 + V_2 + V_3)/3; V_1p = (V_1 + V_2*a + V_3*a^2)/3; V_1n = (V_1 + V_2*a^(-1) + V_3*a^(-2))/3; printf("\n\nZero sequence voltage is = %0.4f /_ %0.2f Volts \nPositive sequence voltage is = %0.4f /_ %0.2f Volts \nNegative sequence voltage is = %0.4f /_ %0.2f Volts\n",abs(V_0),atan(imag(V_0)/real(V_0))*180/%pi, abs(V_1p),atan(imag(V_1p)/real(V_1p))*180/%pi, abs(V_1n),atan(imag(V_1n)/real(V_1n))*180/%pi); // Result // According to Equations 2-90, 2-88 and 2-89 // // // Zero sequence voltage is = 302.6549 /_ 7.59 Volts // Positive sequence voltage is = 558.9050 /_ 13.62 Volts // Negative sequence voltage is = 757.9524 /_ -3.15 Volts