// Example10_12_pg416.sce // Regulation by mmf method // Theory of Alternating Current Machinery by Alexander Langsdorf // First Edition 1999, Thirty Second reprint // Tata McGraw Hill Publishing Company // Example in Page 416 clear; clc; close; // Given data va = 2500e+3; // Volt Ampere rating of the transformer, VA vll = 6600; // Line to Line voltage, Volts r = 0.073; // Resistance in Ohms x = 0.87; // Reactance in Ohms pf1 = 0.8; phase = 3; // Calculations phi = acos(pf1); V = vll / sqrt(3); I = round(va / (phase*V)) ; IR_a = I*r; IX_a = I*x; V_vec = V*(cos(phi) +%i*sin(phi)); E = V_vec + IR_a; E_mag = sqrt(real(E)^2 + imag(E)^2); F_r1_mag = 16500; cos_alpha = (real(E)/E_mag); sin_alpha = (imag(E)/E_mag); alpha = acos(cos_alpha); F_r1 = F_r1_mag*(cos(%pi/2 + alpha) + %i*sin(%pi/2 + alpha)); A_plus_Ax = 10000; F = F_r1 - (A_plus_Ax); F_mag = sqrt(real(F)^2 + imag(F)^2); printf("\n Magnitude of F is %0.2f amp-turns per pole", F_mag); disp('This magnitude of F corresponds to Open-circuit voltage of 4330 Volts'); oc_volt = 4330; regulation = ((oc_volt - V)/V)*100; printf("\nRegulation is found to be %0.1f %% \n", regulation); // Result // Magnitude of F is 23866.02 amp-turns per pole // This magnitude of F corresponds to Open-circuit voltage of 4330 Volts // // Regulation is found to be 13.6 %