// Example1_13_pg28.sce // To find the regulation of transformer // Theory of Alternating Current Machinery by Alexander Langsdorf // First Edition 1999, Thirty Second reprint // Tata McGraw Hill Publishing Company // Example in Page 28 clear; clc; close; // Given data v1 = 1100; // Primary voltage, Volts v2 = 110; // Secondary Open Voltage, Volts volt_sc = 33; // Voltage for Short Circuit full load current, Volts pow_sc_in = 85; // Short Circuit input Power, Watts pf = +0.8; // Power factor lagging 80% va_rating = 5e+3 // volt-ampere rating of transformer, VA // Calculations // Method based on Eq. 1-35 // v1^2 = (v2 + volt_sc*cos(thetae - theta2))^2 + (volt_sc*sin(thetae - theta2))^2; current1 = va_rating/v1; // Current in Amperes thetae = acos(pow_sc_in /( volt_sc * current1 )); theta2 = acos(pf); function y = ff1(v2) y(1) = -(v1^2) + (v2 + volt_sc*cos(thetae - theta2))^2 + (volt_sc*sin(thetae - theta2))^2; endfunction volt2 = fsolve ([0.1], ff1); // voltage in volts // Regulation = ( (v1 - volt2)/v1 ) *100 Regulation1 = ((v1 - volt2)/v1)*100; printf("\nRegulation of the Transformer by method 1 is %.2f %% \n", Regulation1); // Method based on Eq. 1-36 // v1^2 = (v2 + current1*re*cos(theta2) + current1*xe*sin(theta2))^2 + (current1*xe*cos(theta2) - current1*re*sin(theta2))^2; current1 = va_rating/v1; // Current in Amperes thetae = acos(pow_sc_in /( volt_sc * current1 )); theta2 = acos(pf); ze = volt_sc/current1; // impedance in Ohms re = pow_sc_in/(current1^2); // Resistance in Ohms xe = (ze^2 - re^2)^0.5; // Reactance in Ohms function y = ff2(v2) y(1) = -(v1^2) + (v2 + current1*re*cos(theta2) + current1*xe*sin(theta2))^2 + (current1*xe*cos(theta2) - current1*re*sin(theta2))^2; endfunction volt2 = fsolve ([0.1], ff2); // Regulation = ( (v1 - volt2)/v1 ) *100 Regulation2 = ((v1 - volt2)/v1)*100; printf("Regulation of the Transformer by method 2 is %.2f %% \n", Regulation2); // Result // Regulation of the Transformer by method 1 is 2.85 % // Regulation of the Transformer by method 2 is 2.85 %