//chapter-4 page 147 example 4.9 //============================================================================== clc; clear; f=8.6*10^9;//frequency in Hz c=3*10^10;//Velocity of Light in cm/sec a=2.5;//Length of a Waveguide in cm b=1;//Width of a Waveguide in cm //CALCULATION disp('The condition for the wave to propagate along a guide is that wc>w0.'); w0=c/f;//free space wavelength in cm disp('Free space wavelength w0 in cm is'); disp(w0); disp('For TE waves, wc=(2ab/sqrt((mb)^2+(na)^2))'); disp('For TE01 waves'); m1=0; n1=1; wc1=((2*a*b)/(sqrt((m1*b)^2+(n1*a)^2)));//Cutoff wavelength for TE01 mode in cm disp('Cutoff wavelength for TE01 mode in cm is'); disp(wc1); disp('Since wc for TE01=2cm is not greater than w0 TE01,will not propagate for TE01 mode.'); disp('For TE10 waves'); m2=1; n2=0; wc2=((2*a*b)/(sqrt((m2*b)^2+(n2*a)^2)));//Cutoff wavelength for TE10 mode in cm disp('Cutoff wavelength for TE10 mode in cm is'); disp(wc2); disp('Since wc TE10 > w0 TE10 is a possible mode.'); fc=(c/wc2)/10^9;//Cutoff frequency in GHz disp('For TE11 and TM11 waves'); m3=1; n3=1; wc3=((2*a*b)/(sqrt((m3*b)^2+(n3*a)^2)));//Cutoff wavelength for TE11 mode in cm disp('Cutoff wavelength for TE11 and TM11 modes in cm is'); disp(wc3); disp('As wc for TE11 and TM11 is < w0 both TE11 and TM11 do not propagate as higher modes.'); wg=(w0/sqrt(1-(w0/wc2)^2));//Guide wavelength in cm disp('From the above analysis we conclude that only TE10 mode is possible'); //OUTPUT mprintf('\nCutoff frequency is fc=%1.0f GHz \nGuide wavelength is wg=%1.3f cm',fc,wg); //=========================END OF PROGRAM===============================