// Scilab code Exa12.7 : : Page-575 (2011) clc; clear; k = 1.38e-23; // Boltzmann constant, joules per kelvin T = 323; // Temperature, kelvin E = (k*T)/1.6e-19; // Thermal energy, joules sigma_0 = 13.2e-28; // Cross section, square metre E_0 = 0.025; // Energy of the neutron, electron volts sigma_a = sigma_0*sqrt(E_0/E); // Absorption cross section, square metre t_half = 2.25; // Half life, hours lambda = 0.69/t_half; // Decay constant, per hour N_0 = 6.023e+026; // Avogadro's number, per m_Mn = 55; // Mass number of mangnese w = 0.1e-03; // Weight of mangnese foil, Kg A = 200; // Activity, disintegrations per sec N = N_0*w/m_Mn; // Number of mangnese nuclei in the foil x1 = 1.5; // Base, metre x2 = 2.0; // Height, metre phi = A/(N*sigma_a*0.416); // Neutron flux, neutrons per square metre per sec phi1 = 1; // For simplicity assume initial neutron flux to be unity, neutrons/Sq.m-sec phi2 = 1/2*phi1; // Given neutron flux, neutrons/Sq.m-sec L1 = 1/log(phi1/phi2)/(x2-x1); // Thermal diffusion length for given neutron flux, m L = sqrt(1/((1/L1)^2+(%pi/x1)^2+(%pi/x2)^2)); // Diffusion length, metre printf("\nThe neutron flux = %3.2e neutrons per square metre per sec \nThe diffusion length = %4.2f metre", phi, L); // Result // The neutron flux = 3.51e+008 neutrons per square metre per sec // The diffusion length = 0.38 metre // Note: the difussion length is solved wrongly in the testbook