clc clear //input data P0=4//Overall stage pressure ratio T00=557//Temperature at entry in K P3=1//Diffuser exit pressure in bar m=6.5//Mass flow rate of air in kg/s ps1=0.3//Flow coefficient N=18000//Speed of the turbine in rpm Dt=0.42//Rotor tip diameter in m D2m=0.21//Mean diameter at rotor exit in m R=287//The universal gas constant in J/kg.K Cp=1.005//The specific heat of air at constant pressure in kJ/kg.K r=1.4//The ratio of specific heats of air //calculations U1=(3.1415*Dt*N)/60//Peripheral velocity of impeller at inlet in m/s Cr1=ps1*U1//The radial velocity at inlet in m/s a11=atand(Cr1/U1)//The nozzle exit air angle in degree W=m*U1^2*10^-3//Power developed by turbine in kW dT=(1/P0)^((r-1)/r)//The total isentropic temperature ratio in entire process T3s=dT*T00//The final isentropic temperature at exit in K dh2=W/m//The absolute enthalpy change in the first two stages in kJ/kg ns=dh2/(Cp*(T00-T3s))//The stage efficiency of the turbine T02=T00-(W/(m*Cp))//The absolute temperature at the entry of second stage in K T03=T02//The absolute temperature at exit of second stage in K dH=Cp*(T02-T3s)//The total enthalpy loss in kJ/kg dHn=dH/2//The enthalpy loss in the nozzle in kJ/kg C1=Cr1/sind(a11)//Absolute velocity at the inlet in m/s dH0=((C1^2)/(2000*Cp))+(dHn)//The isentropic absolute enthalpy loss in nozzle in kJ/kg dT0=dH0/Cp//The isentropic absolute temperature loss in nozzle in K T1s=T00-dT0//The isentropic temperature at the entry in K P1=P0*(T1s/T00)^(r/(r-1))//The pressure at the entry of turbine in bar T1=T00-((C1^2)/(2000*Cp))//The temperature at the entry of turbine in K d1=(P1*10^5)/(R*T1)//The density of the air at inlet in kg/m^3 b1=m/(d1*Cr1*3.141*Dt)//The width of the rotor at inlet in m C2=Cr1//The avsolute velocity at the second stage entry in m/s T2=T02-((C2^2)/(2000*Cp))//The temperature at the second stage entry in K P23=(T2/T03)^(r/(r-1))//The pressure ratio at the second stage P2=P23*P3//The pressure at the second stage in bar d2=(P2*10^5)/(R*T2)//The density of the air at second stage in kg/m^3 C2=Cr1//The absolute velocity at the second stage in m/s A2=m/(d2*C2)//The area of cross section at the second stage in m^2 h2=(A2/(3.14*D2m))//The rotor blade height at the exit in m M1=C1/(r*R*T1)^(1/2)//The mach number at the nozzle U2=(3.14*D2m*N)/60//The Peripheral velocity of impeller at exit in m/s M2r=(((C2^2)+(U2^2))^(1/2))/(r*R*T2)^(1/2)//The mach number at the rotor exit Ln=(dHn*10^3)/((C1^2)/2)//The nozzle loss coefficient Lr=(dHn*10^3)/(((((C2^2)+(U2^2))^(1/2))^2)/2)//The rotor loss coefficient //output printf('(a)The nozzle exit air angle is %3.2f degree\n(b)The power developed is %3.1f kW\n(c)The stage efficiency is %3.4f \n(d)The rotor width at the entry is %3.5f m\n(e)The rotor blade height at the exit is %3.4f m\n(f)\n (1)The mach number at the nozzle exit is %3.4f\n (2)The mach number at the rotor exit is %3.2f\n(g)\n (1)The nozzle loss coefficient is %3.4f\n (2)The rotor loss coefficient is %3.3f',a11,W,ns,b1,h2,M1,M2r,Ln,Lr)