clc,clear printf('Example 6.13\n\n') V_L=11*10^3 V_ph=V_L/sqrt(3) VA=700*10^3 I_FL=VA/(sqrt(3)*V_L) //full load current IR_a=(1.5/100)*V_ph //product of I and R_a R_a=IR_a/I_FL IX_s=(14/100)*V_ph // product of I and X_s X_s=IX_s/I_FL //synchronous reactance //at full load and 0.8 pf I=I_FL phi=acos(0.8) V_ph=complex(V_ph*cos(phi),V_ph*sin(phi)) //just introduced the angle E_ph=sqrt( (abs(V_ph)*cos(phi)+ IR_a)^2+ (abs(V_ph)*sin(phi)+ IX_s)^2 ) Poles=4,f=50 //poles and frequency delta=asin( (abs(V_ph)*sin(phi)+IX_s)/E_ph) -phi delta_dash_mech=(%pi/180) //displacement in degree mechanical //displacement in degree electrical delta_dash_elec=delta_dash_mech*(Poles/2) P_SY=abs(E_ph)*abs(V_ph)*cos(delta)*sin(delta_dash_elec)/X_s //synchronising power per phase P_SY_total=3*P_SY //total synchronising power ns=120*f/(60*Poles) //in r.p.s T_SY=P_SY_total/(2*%pi*ns) //Synchronising torque printf('Synchronising power is %.2fkW\n',P_SY_total/1000) printf('Synchronising torque is %.2f N-m',T_SY)