clc,clear printf('Example 5.15\n\n') //part(i) Ampere turn method F_O=37.5 F_AR=20 V_L=6600, V_ph=V_L/sqrt(3) //lagging phi=acos(0.8) F_R= sqrt((F_O+F_AR*sin(phi) )^2 + (F_AR*cos(phi))^2 ) //E_ph corresponding to F_R can be obtained by plotting open circuit characteristics E_ph=4350 regulation=100*(E_ph-V_ph)/V_ph printf('(i)By Ampere-turn method or MMF method\nFull-load regulation at 0.8 lagging pf is %.2f percent\n',regulation) //leading phi=acos(0.8) F_R= sqrt((F_O-F_AR*sin(phi) )^2 + (F_AR*cos(phi))^2 ) //E_ph corresponding to F_R can be obtained by plotting open circuit characteristics E_ph=3000 regulation=100*(E_ph-V_ph)/V_ph printf('Full-load regulation at 0.8 leading pf is %.2f percent\n',regulation) //EMF method V_OC_ph=100,V_ph=100 I_sc= 100*(F_O/F_AR) //times the rated value Z_s=V_OC_ph/I_sc F_O= 100 F_AR= Z_s*100 //lagging phi=acos(0.8) F_R= sqrt((F_O+F_AR*sin(phi) )^2 + (F_AR*cos(phi))^2 ) regulation=100*(F_R-V_ph)/V_ph printf('\n(ii)Synchronous impedance method or EMF method\n') printf('Full-load regulation at 0.8 lagging pf is %.2f percent\n',regulation) //leading phi=acos(0.8) F_R= sqrt((F_O-F_AR*sin(phi) )^2 + (F_AR*cos(phi))^2 ) regulation=100*(F_R-V_ph)/V_ph printf('Full-load regulation at 0.8 leading pf is %.2f percent\n',regulation)