// Theory and Problems of Thermodynamics // Chapter 9 // Air_water Vapor Mixtures // Example 7 clear ;clc; //Given data T1 = 313.15 // Temp of air entering adiabatic saturator in K P1 = 101.325 // pressure air entering saturator in kPa T3 = 298.15 // Temp of air leaving adiabatic saturator in K P3 = 101.325 // pressure air entering saturator in kPa ps = 3.169 // from steam tables at T = 313.15K (in kPa) RH = 1 // RH of steam leaving adiabatic saturator is 1 pw = ps // from steam tables at 25 degree C SH_3 = 0.622*pw/(P3-pw) // specific humidity of air hfg_3 = 2442.3 // in kJ/kg hg_1 = 2574.3 // in kJ/kg hf_2 = 104.89 // in kJ/kg Cp_air = 1.0045 // in kJ/kg K SH1 = (Cp_air*(T3-T1) + SH_3*hfg_3) / (hg_1-hf_2) //SH1 = 0.622*pw_2/(P1-pw_2) deff('y=dew(pw_2)', 'y = SH1 - 0.622*pw_2/(P1-pw_2)') pw_2 = fsolve(0.01,dew) ps_40 = 7.384 // from steam table at 40 degree C RH1 = pw_2/ps_40 ps_2 = pw_2 // at dew point ps = pw // Hence TDP = 18.8 degree C (from steam table) // Output Results mprintf('Specific humidity of entering air at 40 degree C = %4.4f kg H20/kg air' , SH1); mprintf('\n Relative humidity of air at 40 degree C = %4.3f ' , RH1); mprintf('\n Dew point = %4.3f kPa' , ps_2);