// Theory and Problems of Thermodynamics // Chapter 9 // Air_water Vapor Mixtures // Example 13 clear ;clc; //Given data mw3 = 1000 // cooling tower supply rate in kg/min T1 = 303.15 // Temp of air entering cooling tower in K RH1 = 0.3 // relative humidity of air entering cooler T2 = 308.15 // Temp of air leaving cooling tower in K RH2 = 0.8 // relative humidity of air leaving cooler T3 = 318.15 // Temp of water entering cooling tower in K T4 = 300.15 // Temp of water leaving cooling tower in K // subscript 1 and 2 denotes the state of air entering and leaving the cooling tower respectively // subscript 3 and 4 denotes the state of water entering and leaving the cooling tower respectively // data from psychometric chart for T = 30 degree C and RH = 0.3 SH1 = 0.0078 // in kg H2O/kg air h1 = 51 // in kJ/kg air // data from psychometric chart for T = 35 degree C and RH = 0.8 SH2 = 0.029 // in kg H2O/kg air h2 = 110 // in kJ/kg air hw3 = 188.45 // in kJ/kg hw4 = 113.25 // in kJ/kg // mass balance for H2O: //mw3-mw4 = ma*(SH2-SH1) // energy balance gives: // mw3*hw3 - mw4*hw4 = ma*(h2-h1) // x(1) = ma; x(2)= mw4; function[f] =F(x) f(1) = mw3-x(2)-x(1)*(SH2-SH1); f(2) = mw3*hw3 - x(2)*hw4 -x(1)*(h2-h1); endfunction x = [10 10]; y = fsolve(x,F) ma = y(1); // air flow rate in kg/min mw4 = y(2); wat_mak = mw3-mw4; // make up water required // Output Results mprintf('Make up water required = %4.2f kg/min' , wat_mak); mprintf('\n Air flow rate = %4.1f kg/min' , ma);