// Theory and Problems of Thermodynamics // Chapter 8 // Power and Refrigeration Cycles // Example 9 clear ;clc; //Given data P1 = 2.5 // entering pressure of superheated steam in MPa T1 = 523.15 // entering temperature of superheated steam in K P2 = 0.5 // pressure at fraction of steam is extracted in MPa P_C = 10 // condenser pressure of steam in kPa // Steam at 2.5 MPa and 523.15 K h7 = 2880.1 // in kJ/kg s7 = 6.4085 // in kJ/kg K // Steam at 0.5 MPa h3 = 640.23 // in kJ/kg hfg = 2108.5 // in kJ/kg vf = 0.001010 // in m^3/kg sf = 1.8607 // in kJ/kg K sfg = 4.9606 // in kJ/kg K s8 = s7 X8 = (s8-sf)/sfg h8 = h3 + X8*hfg // in kJ/kg // Steam at 10 kPa h1 = 191.83 // in kJ/kg hfg = 2392.8 // in kJ/kg vf = 0.001010 // in m^3/kg sf = 0.6493 // in kJ/kg K sfg = 7.5009 // in kJ/kg K s9 = s7 X9 = (s9-sf)/sfg h9 = h1 + X9*hfg // in kJ/kg h2_h1 = vf*(P2*1e3-P_C) // h2_h1 = h2-h1 in kJ/kg h2 = h1 + h2_h1 // in kJ/kg // material and energy balances // h3 = (1-Y)*h2 + Y*h8 where Y = m8/m3 deff('y=rate(Y)', 'y = h3 - (1-Y)*h2 - Y*h8 ') Y = fsolve(0,rate) h4_h3 = vf*(P1*1e3-P_C) // h4_h3 = h4-h3 in kJ/kg h4 = h3 + h4_h3 // in kJ/kg n = ((h7-h4)-(1-Y)*(h9-h1))/(h7-h4) // Output Results mprintf('Thermal efficiency of power plant = %4.4f' ,n);