// Theory and Problems of Thermodynamics // Chapter 8 // Power and Refrigeration Cycles // Example 8 clear ;clc; //Given data P1 = 2.5 // entering pressure of superheated steam in MPa T1 = 523.15 // entering temperature of superheated steam in K P2 = 0.5 // leaving pressure of super heated steam in MPa P_C = 10 // condenser pressure of leaving steam in kPa // Steam at 2.5 MPa and 523.15 K h4 = 2880.1 // in kJ/kg s4 = 6.4085 // in kJ/kg K // Steam at 0.5 MPa hf = 640.23 // in kJ/kg hfg = 2108.5 // in kJ/kg sf = 1.8607 // in kJ/kg K sfg = 4.9606 // in kJ/kg K // Turbine 1 s5 = s4 X5 = (s5-sf)/sfg h5 = hf + X5*hfg // in kJ/kg // Steam at 0.5 MPa and 523.15 K h6 = 2960.7 // in kJ/kg s6 = 7.2709 // in kJ/kg K // Steam at 10 kPa hf = 191.83 // in kJ/kg hfg = 2392.8 // in kJ/kg vf = 0.001010 // in m^3/kg sf = 0.6493 // in kJ/kg K sfg = 7.5009 // in kJ/kg K // Turbine 2 s7 = s6 X7 = (s7-sf)/sfg h7 = hf + X7*hfg // in kJ/kg h2_h1 = vf*(P1*1e3-P_C) // h2_h1 = h2-h1 in kJ/kg h2 = hf + h2_h1 // in kJ/kg n = ((h4 - h5)+(h6-h7)-(h2_h1))/((h4-h2)+(h6-h5)) // Output Results mprintf('Thermal efficiency of power plant = %4.4f' ,n);