// Theory and Problems of Thermodynamics // Chapter 5 //Second Law of Thermodynamcis // Example 22 clear ;clc; //Given data Ph = 0.1 // pressure of hot air flow in MPa Th = 400 // temperature of hot air flow in K Pc = 0.1 // pressure of cold air flow in MPa Tc = 200 // temperature of cold air flow in K Pf = 0.5 // pressure of air flow fed in MPa Tf = 300 // temperature of air flow fed in K R = 8.314 // universal gas constant in J/mol/K Cp = 3.5 * R // specific heat of ideal gas // Suppose 1 mol air at 0.5 MPA, 300 K (State i) enters the device // The device gives 0.5 mol air at 0.1 MPa, 400K(state e1) and // 0.5 mol air at 0.1 MPa, 200K(state e2) // The first law of thermodynamics gives he-hi=0 h12 = Pf*Cp*{Th-Tf+Tc-Tf} // h12 = (he1 - hei)+(he2-hei) // The Second law of thermodynamics for a flow process gives se-s1>=0 se1i = Pf*{Cp*log(Th/Tf)-R*log(Ph/Pf)} // se1i = se1-si (J/K) se2i = Pf*{Cp*log(Tc/Tf)-R*log(Pc/Pf)} // se2i = se2-si (J/K) sei = se1i + se2i // se1i = se1-si (J/K) // Output Results mprintf('The sum of difference in he1 and hi and difference in he2 and hi = %1.0f J/mol', h12) mprintf('\n The difference in se1 and si = %6.4f J/mol K', se1i) mprintf('\n The difference in se2 and si = %7.4f J/mol K', se2i) mprintf('\n The difference in se and si = %6.4f J/mol K', sei) mprintf('\n The device satisfies the laws of thermodynamics. It is Theoritically feasible')