// Theory and Problems of Thermodynamics // Chapter 4 // Energy Analysis of Process // Example 5 clear ;clc; //Given data m_f = 1 // mass flow rate in kg/s X1 = 0.8 // wet steam quality P1 = 3 // Entering steam Pressure in MPa T = 300 // Temperature in C vel_1 = 10 // entering Velocity in m/s Z1 = 5 // Initial elevation above the ground level // Data for discharging steam X2 = 0.85 // Discharge steam quality P2 = 50 // Discharge steam pressure in kPa vel_2 = 50 // discharging Velocity in m/s Z2 = 10 // Final elevation above the ground level Q = -10 // Energy loss as heat from turbine casing in kJ/s g = 9.81 // acceleration due to gravity in m/s // From Super heated steam tables at P = 3.0 MPa and T = 300 c h1 = 2993.5 // enthalpy in kJ/kg // From Super heated steam tables at P = 50 kPa h_f = 340.49 // in kJ/kg h_fg = 2305.4 // in kJ/kg h2 = h_f + X2*h_fg // Power output expression after subjecting W_s = Q - ((h2 - h1) + (vel_2^2 - vel_1^2)/2*1e-3 + g*(Z2 - Z1)*1e-3 ) //in above equation term 2 and term 3 are multiplied with 1e-3 to convert to kW del_KE_PE = (vel_2^2 - vel_1^2)/2*1e-3 + g*(Z2 - Z1)*1e-3 err_KE_PE = del_KE_PE*100/W_s // Output Results mprintf('Turbine output power = %6.2f kW',W_s) mprintf('\n Error percentage ignored in KE and PE terms = %4.3f ',err_KE_PE)