// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Introduction to heat transfer by S.K.Som, Chapter 8, Example 6") //A vertical wire of length(L)=0.5m and Dimeter(D)=0.1mm is maintained at temprature, Tw=400K //The temprature of quicsent air is Tinf=300K //Resistance(R) per meter length is 0.12ohm R=0.12; Tw=400; L=0.5; D=0.1*10^-3;//in metre Tinf=300; //The required properties at the film temprature(Tf)=350K are kinematic viscosity(nu=20.75*10^-6m^2/s),Prandtl number(Pr=0.70),conductivity(k=0.03W/(m*°C)) Tf=350; Pr=0.70; nu=20.75*10^-6; k=0.03; //Area(A)=L*B m^2 A=%pi*D*L; //Volume expansion Coefficient is Beta Beta=1/(Tf); //g is acceleration due to gravity =9.81m/s^2 g=9.81; //Grashoff number is given by GrL=(g*beta*(Tw-Tinf)*L^3)/(nu)^2 disp("Grashoff number is") GrL=(g*Beta*(Tw-Tinf)*L^3)/(nu)^2 //Rayleigh number is defined as RaL=GrL*Pr disp("Rayleigh number is") RaL=GrL*Pr disp("Therefore the flow is laminar") //NuL is nusselt number //C and n are constants disp("Now we use NuL=0.59*RaL^(1/4) with the value of constants C=0.59,n=(1/4)") disp("Nusselt number is") NuL=0.59*RaL^(1/4) //hbarL1 is the Average heat transfer coefficient disp("Average heat transfer coefficient in W/(m^2*K)") hbarL1=(NuL*k)/L //Grashoff number GrD=GrL*(D/L)^3 disp("Grashoff number GrD=GrL*(D/L)^3") GrD=GrL*(D/L)^3 //Thr correction factor is given By F=1.3*[(L/D)/GrD]^(1/4)+1.0 disp("Thr correction factor is") F=1.3*[(L/D)/GrD]^(1/4)+1.0 disp("The correct value of Average heat transfer coefficient(hbarL2)=hbarL1*F in W/(m^2*K) is") hbarL2=hbarL1*F //The ohmic power loss is given by energy balance I^2*R=q=hbar2*A*(Tw-Tinf) //q is the ohmic power loss disp("The ohmic loss in W is ") q=hbarL2*A*(Tw-Tinf) //The current flowing in the wire I=(q/(R*L)^(1/2) disp("The current flowing in the wire in Ampere is") I=(q/(R*L))^(1/2)