// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Introduction to heat transfer by S.K.Som, Chapter 7, Example 10") //Air at one atmospheric pressure and temprature(Tbi=75°C) enters a tube of internal diameter(D)=4.0mm with average velocity(U)=2m/s Tbi=75; D=4*10^-3; U=2; //The heated tube length is L=0.04m and a constant heat flux is imposed by the tube surface on the air over the entire length. L=0.04; //An exit bulk mean temprature(Tbo)=125°C is required. Tbo=125; //The properties of air 100°C are density(rho=0.95kg/m^3),Prandtl number(Pr=0.70),conductivity(k=0.03W/(m*K)),viscosity(mu=2.18*10^-5kg/(m*s)),specific heat(cp=1.01kJ/(kg/K)) rho=0.95; Pr=0.70; k=0.03; mu=2.18*10^-5; cp=1.01*10^3; //Re is the reynolds number disp("Reynold number is") Re=rho*U*D/mu //Leh is the hydrodynamic entrance length disp("Therefore the flow is laminar.The hydrodynamic entrance length in m is") Leh=0.05*Re*D //Let is thermal entrance length disp("The thermal entrance length in m is") Let=0.05*Re*Pr*D disp("The thermal entrance length is greater than the tube length Therefore the flow is hydrodynamically developed but not thermally developed" ) //We calculate the inverse graetz number at x=L=0.04m x=0.04; //Gr_1 is inverse of graetz number disp("The inverse of graetz number Gr_1 is") Gr_1=(x/D)*(1/(Re*Pr)) //For constant surface heat flux nusselt number is Nu=4.7 and Graetz number is Gr=4.1*10^-2 Nu=4.7; Gr=4.1*10^-2; //hL is the local heat transfer coefficient disp("Therefore the local heat transfer coefficient in W/(m^2*K) is") hL=Nu*(k/D) //from an energy balance qw*pi*D*L=mdot*cp*(Tbo-Tbi) //mdot is the mass flow rate disp("The mass flow rate of air in kg/s is") mdot=rho*(%pi/4)*D^2*U //qw is the surface heat flux disp("Therefore surafce heat flux qw in W/m^2 is") qw=[mdot*cp*(Tbo-Tbi)]/(%pi*D*L) //Let Twe be the surface temprature at the exit plane.Then we can write hL*(Twe-Tbo)=qw disp("The tube surface temprature at the exit plane in °C is ") Twe=Tbo+(qw/hL)