// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Introduction to heat transfer by S.K.Som, Chapter 5, Example 7") //A wall is exposed to nitrogen at one atmospheric pressure and temprature,Tinf=4°C. Tinf=4; //The wall is H=2.0m high and B=2.5m wide and is maintained at temprature,Ts=56°C Ts=56; H=2; B=2.5; A=H*B;//area is(A) //The average nusselt number NuHbar over the height of the plate is given by NuHbar=0.13*(Gr*Pr)^(1/3) //The properties of nitrogen at mean film temprature(Tf) is (56+4)/2=30°C are given as density(rho=1.142kg/m^3) ,conductivity(k=0.026W/(m*K)), //kinematic viscosity(nu=15.630*10^-6 m^2/s) ,Prandtl number(Pr=0.713) rho=1.142; k=0.026; nu=15.630*10^-6; Pr=0.713; Tf=30; //We first have to detrmine the value of Grashoff number,Gr.In consideration of nitrogen as an ideal gas,we can write //Beta(The volumetric coefficient of expansion)=1/T disp("Beta(The volumetric coefficient of expansion in K^-1 is") Beta=1/(273+Tf) //Now Gr=(g*Beta*(Ts-Tinf)*H^3)/nu^2 g=9.81;//acceleration due to gravity disp("Grashoff number is") Gr=(g*Beta*(Ts-Tinf)*H^3)/nu^2 disp("The average nusselt number is") NuHbar=0.13*(Gr*Pr)^(1/3) //hbar is the heat flux disp("Heat flux hbar in W/(m^2*°C)") hbar=NuHbar*k/H //Q is the heat loss from the plate disp("The heat loss from the plate in W is") Q=hbar*A*(Ts-Tinf)