// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Introduction to heat transfer by S.K.Som, Chapter 2, Example 15") //A stack that is b=300mm wide and l=100mm deep contains N=60 fins each of length L=12mm. L=0.012;//in metre b=0.3;//in metre l=0.1;//in metre N=60; //The entire stack is made of aluminum which is everywhere t=1.0 mm thick. t=0.001;//in metre //The temprature limitations associated with electrical components are Tb=400K and TL=350K. //Tb is base temprature and TL is end temprature Tb=400; TL=350; //Given convection heat transfer coefficient(h=150W/(m^2*K)),Surrounding Temprature(Tinf=300K),thermal conductivity of aluminium(kaluminium=230W/(m*K)) h=150; Tinf=300; kal=230; //Here both the ends of the fins are at fixed tempratures .Therefore we use M=(h*P*k*A)^0.5 and m=((h*P)/(k*A))^0.5,thetab=Tb-Tinf,thetaL=TL-Tinf //from the given data perimeter of each fin is given by P= 2*(l+t)in m and area of each fin is A=t*l disp(" perimeter of each fin in m is") P= 2*(l+t) disp("Cross sectional area of fin in m^2 is") A=t*l //M is defined as (h*P*kal*A)^0.5 and m is defined as ((h*P)/(kal*A))^0.5 M=(h*P*kal*A)^0.5 m=((h*P)/(kal*A))^0.5 //thetab and thetaL are the parameters that define the fin tempratures at base and tip respectively. disp("Temprature parameter at fin base in K is") thetab=Tb-Tinf disp("Fixed temprature at fin tip in K is") thetaL=TL-Tinf //Heat loss from the plate is Qb disp("Heat loss from the plate at 400K in W is") Qb=[N*(h*P*kal*A)^0.5*thetab*((cosh(m*L)-(thetaL/thetab))/(sinh(m*L)))]+(((l*b)-(N*A))*h*thetab)+(l*b*h*thetab)