// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Introduction to heat transfer by S.K.Som, Chapter 2, Example 13") //A very long,10mm diameter(D) copper rod(thermal conductivity,k=370W/(m*K))is exposed to an enviroment at temprature,Tinf=20°C. D=0.01; k=370; Tinf=20; //The base temprature of the radius maintained at Tb=120°C. Tb=120; //The heat transfer coefficient between the rod and the surrounding air is h=10W/(m*K^2) h=10; //The rate of heat transfer for all finite lengths will be given by P/A=(4*pi*D)/(pi*D^2) //Let P/A=X disp("P/A in m^-1 is") X=(4*%pi*D)/(%pi*D^2) //m is defined as [(h*p)/(k*A)]^0.5 disp("m in m^-1 is") m=(h*X/k)^0.5 //Let Y=h/(m*k) Y=h/(m*k) //Let M=(h*P*k*A)^0.5 P=(%pi*D);//perimeter of the rod A=(%pi*D^2)/4;//Area of the rod disp("M in W/K is") M=(h*P*k*A)^0.5 //thetab is the parameter that defines the base temprature disp("thetab in °C is ") thetab=Tb-Tinf //Heat loss from the rod is defined as Q=(h*P*k*A)*thetab*{[(h/m*k)+tanh(m*L)]/[1+(h/m*k)*tanh(m*L)]} disp("Heat loss from rod in Watt, for different value of length(in m) is ") L=0.02//Length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} L=0.04//length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} L=0.08//length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} L=0.20//length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} L=0.40//length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} L=0.80//length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} L=1.00//length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} L=10.00//length of rod Q=M*thetab*{[(Y)+tanh(m*L)]/[1+(Y)*tanh(m*L)]} //For an infinitely long rod we use heat loss as ,Qinf=(h*P*k*A)^0.5*thetab disp("For an infintely long rod heat loss in W is") Qinf=(h*P*k*A)^0.5*thetab disp("We see that since k is large there is significant difference between the finite length and the infinte length cases") disp("However when the length of the rod approaches 1m,the result become almost same." )