//Illustraion of Taylor Series for approximation //It needs symbolic toolbox clc; clear; close(); cd ~/Desktop/maxima_symbolic; exec symbolic.sce y0 = 1; x0 = 0; y1_0 = -y0^2/(1+x0); y2_0 = (2*y0^3+y0^2)/((1+x0)^2); y3_0 = -(6*y0^4 + 6*y0^3 + 2*y0^2)/((1+x0)^3); //similarly y4_0 = 88; y5_0 = -694; y6_0 = 6578; y7_0 = -72792; syms r h; format('v',10); yxr = 1 - r*h + (y2_0*(r*h)^2)/factorial(2) - (y3_0*(r*h)^3)/factorial(3) + (y4_0*(r*h)^4)/factorial(4) - (y5_0*(r*h)^5)/factorial(5) +(y6_0*(r*h)^6)/factorial(6) - (y7_0*(r*h)^7)/factorial(7); yxr_5d = 1 - r*h + (y2_0*(r*h)^2)/factorial(2) + (y3_0*(r*h)^3)/factorial(3) + (y4_0*(r*h)^4)/factorial(4); h = 0.05; r = 1; yx1 = eval(yxr_5d); format('v',8); disp(dbl(yx1), 'Value when r = 1 :'); syms r h; format('v',10); yxr = 1 - r*h + (y2_0*(r*h)^2)/factorial(2) - (y3_0*(r*h)^3)/factorial(3) + (y4_0*(r*h)^4)/factorial(4) - (y5_0*(r*h)^5)/factorial(5) +(y6_0*(r*h)^6)/factorial(6) - (y7_0*(r*h)^7)/factorial(7); yxr_5d = 1 - r*h + (y2_0*(r*h)^2)/factorial(2) + (y3_0*(r*h)^3)/factorial(3) + (y4_0*(r*h)^4)/factorial(4) + (y5_0*(r*h)^5)/factorial(5) ; h = 0.05; r = 2; yx1 = eval(yxr_5d); format('v',8); disp(dbl(yx1), 'Value when r = 2 :')