//Least square approximation to continuous functions clc; clear; close(); format('v',8); funcprot(0); deff('[g]=f(x,y)','g= -y^2/(1+x)'); disp('approximation of e^x on [0,1] with a uniform weight w(x)=1') a11 = integrate('1','x',0,1); a12 = integrate('x','x',0,1); a13 = integrate('x*x','x',0,1); a14 = integrate('x^3','x',0,1); a21 = integrate('x','x',0,1); a22 = integrate('x^2','x',0,1); a23 = integrate('x^3','x',0,1); a24 = integrate('x^4','x',0,1); a31 = integrate('x^2','x',0,1); a32 = integrate('x^3','x',0,1); a33 = integrate('x^4','x',0,1); a34 = integrate('x^5','x',0,1); a41 = integrate('x^3','x',0,1); a42 = integrate('x^4','x',0,1); a43 = integrate('x^5','x',0,1); a44 = integrate('x^6','x',0,1); c1 = integrate('exp(x)','x',0,1); c2 = integrate('x*exp(x)','x',0,1); c3 = integrate('x^2*exp(x)','x',0,1); c4 = integrate('x^3*exp(x)','x',0,1); A = [a11 a12 a13 a14;a21 a22 a23 a24;a31 a32 a33 a34;a41 a42 a43 a44]; C = [c1;c2;c3;c4]; ann = inv(A)*C; disp(ann, 'The coefficients a0,a1,a2,a3 are respectively : ' ); deff('[px]=p3(x)','px=ann(4)*x.^3+ann(3)*x.^2+ann(2)*x+ann(1)'); x = [0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]'; e = exp(x); p = p3(x); err = e-p; ann = [x e p err]; disp(ann,'Displaying the value of x exp(x) p3(x) exp(x)-p3(x) :'); plot(x,err); plot(x,zeros(length(x),1));