//Least square aproximation method with exponential functions clc; clear; close(); xi = [0 0.25 0.4 0.5]; yi = [9.532 7.983 4.826 5.503]; wi = ones(1,4); //data corresponding to linearised problem Xi = [0 0.25 0.4 0.5]; Yi = [2.255 2.077 1.574 1.705]; wi = ones(1,4); format('v',6); //Representation of equation in matrix form W = [sum(wi) sum(wi.*xi); sum(wi.*xi) sum(wi.*xi.*xi)]; Y = [sum(wi.*Yi); sum(wi.*Yi.*Xi)]; C = inv(W)*Y; A = C(1); B = C(2); a = exp(2.281); b = B; disp(a, 'a = '); disp(b, 'b = '); //So the non linear system becomes disp('9.532-a+7.983*exp(0.25*b)-a*exp(0.5*b)+4.826*exp(0.4*b)-a*exp(0.8*b)+5.503*exp(0.5*b)-a*exp(b) = 0'); disp('1.996*a*exp(0.25*b)-0.25*a*a*exp(0.5*b)+1.930*a*exp(0.4*b)-0.4*a*a*exp(0.8*b)+2.752*a*exp(0.5*b)-0.5*a*a*exp(b) = 0'); //Applying Newtons Method we get a = 9.731; b = -1.265; disp(a , 'a = '); disp(b , ' b = ');