//Given's Method //reduce A1 to tridiagonal form clc; clear; close(); format('v',7); A1 = [2 -1 1 4;-1 3 1 2;1 1 5 -3;4 2 -3 6]; disp(A1,'A = ') // zero is created at (1,3) //by taking the rotation matrix X1=[c 0 s; 0 1 0;-s 0 c]; where c=cos and s=sin //O is theta count =0; for i=1:(4-2) for j=i+2:4 if abs(A1(i,j))>0 then p=i+1;q=j; O = -atan(A1(p-1,q)/(A1(p-1,p))); c = cos(O); s = sin(O); X = eye(4,4); X(p,p)=c; X(q,q)=c; X(p,q)=s; X(q,p)=-s; A1 = X'*A1*X; disp(A1, 'Ai = '); disp(X ,'X = '); disp(O, 'Theta = '); count = count+1; end end end disp(A1,'Reduced A1 to trigonal matrix is : ')