clear all; clc; disp("Scilab Code Ex 1.2 : ") f_d = 225; //N w_uniform = 800; // N/m l_ac = 0.200; //m l_cb = 0.05+0.1; //m l_bd = 0.100; //m l_bearing = 0.05; //m f_resultant = w_uniform*l_cb //120N l_f_resultant_b = (l_cb/2)+ l_bearing; //0.125m l = l_ac + l_cb + l_bearing + l_bd // This problem is solved by considering segment AC of the shaft. //Support Reactions: m_b = 0; // Net moment about B is zero for equilibrium . Sum Mb = 0. a_y = -((f_d*l_bd) - (f_resultant*l_f_resultant_b))/ (l - l_bd) // finding the reaction force at A // Refer to the free body diagram in Fig.1-5c. f_c = 40 //N //Balancing forces in the x direction: n_c = 0 //Balncing forces in the y direction: v_c = a_y - f_c //-18.75N - 40N-Vc = 0 // Balncing the moments about C: m_c = ((a_y * (l_ac + 0.05)) - f_c*(0.025) ) // Mc+40N(0.025m)+ 18.75N(0.250m) = 0 // Displaying results: printf('\n\nThe resultant force = %.2f N',f_resultant); printf('\nThe reaction force at A = %.2f N',a_y); printf('\nThe horizontal force at C = %.2f N',n_c); printf('\nThe vertical force at C = %.2f N',v_c); printf('\nThe moment about C = %.2f Nm',m_c); //-------------------------------------------------------------------END-----------------------------------------------------------------------------------------